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SUMMARY 

A numerical and an experimental study of the flow of an incompressible fluid in a polar cavity is presented. 
The experiments included flow visualization, in two perpendicular planes, and quantitative measurements of 
the velocity field by a laser Doppler anemometer. Measurements were done for two ranges of Reynolds 
numbers; about 60 and about 350. The stream function-vorticity form of the governing equations was 
approximated by upwind or central finite-differences. Both types of finite-difference approximations were 
solved by a multi-grid method. Numerical solutions were computed on a sequence of grids and the relative 
accuracy of the solutions was studied. Our most accurate numerical solutions had an estimated error of 0 1 per 
cent and 1 per cent for Re = 60 and Re = 350, respectively. It was also noted that the solution to the second 
order finite difference equations was more accurate, compared to the solution to the first order equations, only 
if fine enough meshes were used. The possibility of using extrapolations to improve accuracy was also 
considered. Extrapolated solutions were found to be valid only if solutions computed on fine enough meshes 
were used. The numerical and the experimental results were found to be in very good agreement. 
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INTRODUCTION 

The computation of the flow in a driven cavity has been used as a standard problem to test 
numerical methods for incompressible flows. A review of many of these methods and a comparison 
of some parameters are given by Tuann and Olson,’ Gupta and Manohar2 and Peyret and 
Tay10r.~ In most published works the computed flow field is characterized by the streamline 
pattern and by the equi-vorticity line pattern, the values of the stream function and the vorticity 
at the centre of the main vortex and, in some cases, the location of that point. 

The comparison of these numerical parameters leads to the following observations: The 
(qualitative) streamline patterns are similar for different methods. On  the other hand the numerical 
values of the stream function and the vorticity at the centre of the main vortex reveal some 
differences (see e.g. Table I11 of Reference 2). We also note that the numerical solution for a given 
Reynolds number (Re)  is sensitive to the form of the partial differential equations (PDE) 
(conservative or  non-conservative forms) and to the formal order of accuracy of the finite-difference 
approximations. Unfortunately, the formal accuracy does not tell how accurate the solution is, for 
a given mesh. This is so since the truncation errors indicate the asymptotic behaviour of the finite- 
difference equations (FDE) and the solution to it, as the mesh size goes to zero. When the PDE has 
a unique solution the asymptotic numerical solution should give an accurate description of the 
real flow. It has been observed recently4 that for a given mesh and for a certain range of R e  (which 
depends on the mesh) the FDE may have non-unique solutions, and these solutions are not ‘close’ 
to the solution which is obtained on a much finer grid. This fact emphasizes the importance of 
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quantitative experimental data which can be used in the assessment of the accuracy of numerical 
methods and in choosing the ‘right’ solution in cases of non-uniqueness. 

It is remarkable that in contrast to the numerous numerical solutions to the driven cavity 
problem, there is only very limited experimental information on such flows. Pan and Acrivos5 
published a flow visualization study of the flow in rectangular cavities and Reynolds numbers up to 
2700. Their apparatus consisted of a 12-inch-diameter wheel rotating on top of a hole of 40 inch 
depth and 4 x 4-inch cross-section. The hole was fitted with a removable diaphragm to adjust the 
desired aspect ratio (height to width ratio). Mills’6 experiments were conducted on a square cavity. 
The flow in the cavity was visualized and some measured data were obtained by a hot-wire 
anemometer, for Re = lo5. All these results, unfortunately, cannot be used as reference for detailed 
quantitative comparisons with numerical solutions. 

In recent years some laser Doppler velocity measurements on a channel-flow driven7 and a lid- 
driven8 cavity have been reported. Bogatyrev and Gorin7 studied the flow in a rectangular (3-D) 
cavity. The upper wall of the cavity was open to a straight channel. The flow in the cavity was 
driven by the motion of the fluid in the channel. The results of these measurements cannot be used 
for comparison with numerical solutions for the lid-driven cavity. More relevant results for the iid- 
driven cavity were presented by Kossef e f  a1.* Their cavity had a square cross-section and length to 
depth ratio of 3: 1 and 1: 1 (lo3 6 Re 6 lo4). In all cases no steady 2-D flow was present. 

Here, we treat the flow in a polar cavity (this geometry has been chosen for experimental 
reasons). The governing equations for two-dimensional viscous flows are written in terms of the 
stream function and the vorticity, in polar co-ordinates. The discretized problem is solved by a 
multigrid (MG) method. The accuracy of the numerical solutions is studied and extrapolated 
results are computed. The numerical solutions are compared with our experimental results for the 
available cases. 

Our experiments had two purposes. First, to give a qualitative description of the flow field 
(including the secondary vortices) by flow visualization and secondly, to provide the velocity vector 
along some radial lines. The measurements were done by a laser-Doppler anemometer for two R e  

Figure l(a). The experimental configuration 



DRIVEN FLOW IN A POLAR CAVITY 313 

groups (‘low’ Re about 60 and ‘high’ Re about 350). For the higher Re group three-dimensional 
flow was observed in the entire cavity and for increasing Re more and more air-bubbles were mixed 
into the fluid. For these reasons no measurements were done for higher Reynolds numbers. 

NUMERICAL SIMULATION O F  THE FLOW 

The governing equations and their approximation 

The numerical simulation of the flow in an apparatus of the type shown in Figure l(a) is 
considered. Here, we assume a two-dimensional flow in the plane, normal to the axis of the 
cylindrical cavity. 

The Navier-Stokes equations are written in polar co-ordinates (r, 0) in terms of the stream 
function ($) and the vorticity (0) as dependent variables. 

V 2 0 - R e  urn,+-0,  = O  ( 3 
where 

1 
u = - $ , ,  v =  - $ r  

Y 

with u and v as the radial and the azimuthal components of the velocity vector, respectively. The 
Reynolds number, Re, is based upon the radius, the surface-velocity of the rotating cylinder which 
drives the flow, and the kinematic viscosity of the fluid. 

The computational geometry is displayed in Figure l(b). The no-slip boundary conditions are 
applied on the solid walls. The walls of the driven cavity give rise to a closed streamline. The no-slip 
boundary conditions specify also the normal derivative of the stream function. This derivative, 
together with equation (2) can be used to compute the boundary vorticity. 

A polar mesh with uniform spacing in both the radial and the azimuthal directions, is used. The 
differential equation (1) and (2) are approximated by second order accurate central differences. The 

P 

Figure l(b). The two-dimensional cavity, the polar co-ordinates and the computational domain ABCD. The boundary DA 
moves with a constant velocity which is used in defining the Reynolds number. The radius of the rotating cylinder is taken as 

the reference length 
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- c  convective terms are approximated by first order accurate upwind differences (d,, 3,) or central 
differences (dr ,  do): 

V,"$ - w = 0 (4) 
where V," is a second order accurate central difference approximation to V 2 .  8,. and 8, denote either 
the upwind or the central finite-difference operator in the r and 0 directions, respectively. 

The boundary conditions are as follows: $ = 0 on the boundary ABCD (in Figure l(b)). The 
boundary vorticity is computed by the following finite-difference relations: 

Along AB: 

wi,J = 2 $ i , J -  l/r?hi (54 

wl, j  = 2 ( r 3 / 2 $ Z , j / r l  + hr)/h,2 ( 5 4  

along DA: 

The system of finite-difference equations (3), (4) and (5) can be solved by different iterative 
methods.' Here, we describe shortly a multi-grid method which, because of its efficiency, has been 
used in all our numerical computations. 

Multi-grid solution of the FDE 

In all our computations we have used a simplified version of the MG method of Thunell and 
Fuchs." In the following we discuss briefly some of the details of the method and indicate possible 
improvements to increase the computational efficiency. 

The smoothing in the MG scheme is done by a point relaxation method. At each node point both 
w and $ are updated, in such a way that equations ( 3 )  and (4) are satisfied locally. The direction of 
the relaxation sweep is from corner A toward corner C in Figure l(b). As shown by Fuchs" there 
are several factors which determine the smoothing efficiency. Among these factors are the mesh 
spacing ratio (rho/hr) and the alignment of the directions of the relaxation and the flow. Optimal 
smoothing is obtained when the mesh spacing ratio equalsone and, for large Re, if the relaxation is 
done in the flow direction. In our case the mesh spacing ratio varies between 1 and 2, and the 
relaxation direction is against the flow in a substantial part of the flow field. However, even the 
simple, non-optimal, relaxation scheme gives an acceptable smoothing of high frequency error 
components. 

Injection is used as dependent variable transfer (restriction) operator from fine to coarse grids. 
That is, the values of the dependent variables are the same on all nodal points which are in common 
for the different grids. By using averaging, a Smoothing effect is achieved and faster convergence 
can be obtained." 

For the square cavity, Thunell and Funchs" have also shown that the choice of the boundary 
vorticity approximation and its application, affects the total convergence rate of the MG scheme. 



DRIVEN FLOW IN A POLAR CAVITY 315 

Further improvements could be achieved by using a weighted Jacobi relaxation scheme. Here, we 
made no attempts to optimize the different MG steps. In spite of the fact that the method was not 
optimal, relatively fast convergence was obtained for a wide range of Re. 

EXPERIMENTAL APPARATUS AND TECHNIQUES 

The apparatus consists of a cylinder and a cylindrical cavity with parallel end walls and a cricle- 
sector cross-section (see Figure l(a)). The circle sector is limited towards the apex by the cylinder 
surface, and the distant wall is a fixed circle bow. The cylinder has a diameter of 95 mm and the 
length of the cavity is 400 mm. The radial walls are 475 mm high and the opening angle is 1 radian. 
The cylinder is made of chromium-plated steel and the walls of plexiglass. It is possible to turn the 
cylindrical cavity around its axis, and to fix it at different angles. A cylindrical co-ordinate system 
(r,  8,Z) is used in such a way that the axis ofthe rotating cylinder is parallel with the Z-axis. The end 
wall of the apparatus through which the laser beams enter the cavity, is at 2 = 0.- 

m2/s at 20°C) through a hole in the 
far end bottom corner, while another hole located near the top corner, was used for air ventilation. 
The latter hole was also used as passage for a thermocouple to check the oil temperature, An a.c. 
motor rotated the cylinder at a measured rate. The apparatus was placed on a machine base to 
allow vertical and horizontal adjustments. 

The velocity field was measured with a laser Doppler anemometer (LDA) in backscatter mode. 
The LDA consists of DISA-55X modular LDA optics, traversing system, counter, frequency 
shifter, a Digital PDP 1 1/05 computer, a 4 W Ar-ion laser and a home-made channel switch. As the 
laser beams penetrated through the end wall, the traversing system made it possible to move the 
measuring volume in a radial direction. Using a lens of focal length 310 mm and a beam-expansion 
ratio of 1.9, the measuring volume was estimated to be 1.1 mm long and 0.88 mm in diameter. The 
oil was seeded with Al,O, particles (less than 2.5 pm in diameter). 

The traversing and the switching between channels were computer controlled. At each 
measuring point, 50 samples were taken per velocity component and the mean velocity for each 
component was computed by the ‘residence time weighting’ method,” The velocity field in three 
different cross-sections (2 = 10, Z = 100 and Z = 200mm) was measured. Measurements were 
made for two ranges of Reynolds number: The ‘low’ Re range was about 60, and the ‘high’ Re range 
was about 350. The measurements in the middle plane (2 = 200 mm) were more restricted in angle 
and the sampling times were long (several seconds), therefore most results which are given here are 
for the measurements in the plane Z = 100mm. 

A flow visualization technique was also used to produce a qualitative picture of the flow field. By 
this method, some three-dimensional effects were estimated. The flow field was visualized by using 
A1,0, particles. By letting a narrow laser beam pass through a glass rod, a thin slice of the 
cylindrical cavity was illuminated. Pictures at  some different stations were taken for the two Re 
groups. 

The cavity was filled with Shell Ondina-oil32 (v = 8 x 

NUMERICAL AND EXPERIMENTAL RESULTS 

Numerical results 

First, we consider the efficiency of the MG method which is described above. We define a work 
unit as the computational effort which is equivalent to one relaxation sweep on the finest grid. The 



316 L. FUCHS AND N. TILLMARK 

average convergence factor, q, is defined as: 

where R, and Ri are the final and the initial residuals, respectively, and W is the number of work 
units which is needed to attain R,. 

Table I shows the average convergence factors of the MG method for different numbers of mesh 
intervals, N ,  (in the finest grid) and some Re. The coarsest grid in all cases is the same (with 4 x 4 
intervals). 

The convergence factor on the fine grids turned out to be insensitive to variations in the 
Reynolds number for Re d 2000. For coarse grids, the convergence is fast only for relatively small 
Reynolds numbers. 

The convergence factors of the present method are not as good as those which are given by 
Thunell and Funchs" for the square cavity problem. On the other hand the current method can be 
considered as efficient: by a computational effort roughly equal to about 100 relaxation sweeps on 
the finest grid, the residuals are reduced by 6 orders of magnitudes for all Re d 500. 

Results were computed on different grids and Re d 2000. The iterations were terminated when 
the residuals of equations ( 3 )  and (4) became less than This high accuracy is much beyond (by 
several orders of magnitudes) the truncation errors. On the other hand, high accuracy in solving the 
FDE is needed if extrapolations are to be meaningful. For Re = 350 and Re = 60 numerical 
solutions were computed on several grids (with the finest containing 128 x 128 intervals). For other 
Re, most results were computed on a medium grid with 80 x 80 intervals. 

To gain some information about the accuracy of the numerical solutions, we have solved the 
FDE for Re = 60 and Re = 350 on successively refined grids. Assuming that the order of accuracy 
of the solution is II, then the following expansions are valid: 

where pi, qi, ri, and si are truncation error functions. $, 12,5 and 6 solve the differential problem (1) 
and (2). If the assumption on the accuracy is correct, then these functions are independent of h. The 

Table I. The convergence factor, q, for some 
grids and Re 

Re N = 1 6  N = 3 2  N = 6 4  

10 
60 

3 50 
500 
750 

1000 
1500 
2000 

0.76 0.82 0.84 
0.76 0.80 085 
0.89 0.88 087 
089 0.9 1 0.87 
- 0.9 1 0.88 

0.96 0.9 1 0.90 
- 0.95 0.90 
- - 0.90 
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validity of the assumption may be checked by computing pl ,  yl, r l  and s1 in the following way: 
z?' . .  = (ti - t,)/(h? - h?) 

where t and T stand for $, u, v or o and p ,  q, r or s, respectively. 
The truncation error functions are computed by using the finest grid as reference ( j  = 1). The root 

mean square values of the computed p l ,  q,,  r l  and s1 for the solution to the upwind FDE (n  = 1) on 
some grid combinations and Re = 350, are displayed in Table 11. 

Table 11 shows that the truncation error functions are (almost) independent of the mesh size. 
This fact indicates that expansion (7) is valid and extrapolated solutions may be computed by using 
the solutions obtained on different grids (finer than 32 x 32 intervals for Re = 350). 

It is also noted that the absolute values of these truncation error functions increase with 
increasing order of derivation of $ ( i t .  Is1 1 > 141 1 > Ipl I). This means that the different terms in 
expansions (7) are not represented by their coefficients unless h is small enough. Under such 
circumstances a formally second (or higher) order scheme does not give better accuracy than the 
one obtained by the first order method on relatively coarse grids. For the same reason the accuracy 
of extrapolated results based upon coarse grid solutions may be even less accurate than the original 
solutions. To be able to determine the coarsest grid which may be used for extrapolation purposes, 
the truncation error functions have to be computed. 

The accuracy levels of the numerical solutions have been studied by considering the values of the 
stream function on a group of mesh points in common to a sequence of grids. This group of mesh 
points includes 81 nodal points, uniformly distributed in the cavity. Extrapolated values of the 
stream functions at these points are computed. The relative error can be defined, for the 
solution ($,) on each grid j ,  by 

Figures 2 and 3 show the relative error as a function of the mesh size (l /N) for Re = 60 and 
Re = 350, respectively. The computed order of convergence has been defined by the slope of the best 
(RMS) straight-line fit through data related to grids with more than 48 intervals in each direction. 
As seen, the asymptotic rate of convergence, as N increases, is as predicted by the theory for 
both finite difference schemes. Furthermore, it is noted that the second order method gives higher 

Table 11. The truncation error functions computed 
by relation (8). 
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R e  = 60 
Rccuracy Computed o r d e r  

1 -ST D - 0.8 
2-ND a _ _ _ _  2.0 

/’ Log( 1 / N )  
128 9680 64 4 8 4 0  32 24 16 = N 

Figure 2. The relative error in the stream function as function of the mesh size (1,”). Upwind (-------) and central 
( - - - - - - )  FDE. R e = 6 0  

R e  = 350 
Accuracy Computed 
I-ST E l -  
2-ND d _ _ _ _  

order  
1 . 0  
2.1 

/ r 
/ 

Log < 1 /N) 

Figure 3. The relative error in the stream function as function of the mesh size (l/iV). Upwind (- ) and central 
( - - - - - )  FDE. R e = 3 5 0  

level of accuracy only if fine enough meshes are used. The relative error for Re = 350 is larger by 
an order of magnitude compared to the error for Re = 60. The error in the numerical solutions 
which are compared with experimental results in the following, is estimated to about 1 per cent. 

An alternative method to higher order finite differences, is to compute an extrapolated solution 
(e.g. Reference 13). When relations (7) are valid one can eliminate zlr z2,.  . . , z, by using n solutions. 
However, for Re=350 we have found that extrapolated solutions, obtained by two pairs of 
solutions result in an indistinguishable streamline pattern. A comparison of the velocity profiles of 
the extrapolated solution to second and third order accuracy show that the differences are also very 
small. On the other hand, extrapolation of solutions from coarse grids are inaccurate, which is not 
unexpected in the light of the truncation error functions variation for coarse grids (Table 11). 



Figure 4. Visualization of the flow in the axial direction. Re = 55. The axial velocity component disappears at about 50 mm 
frnm the end wall 

Figure 5. Visualization of the flow in the axial direction. Re = 350. The axial velocity component is non-vanishing 
throughout the cylindrical cavity. Three-dimensional effects are least in the middle of the apparatus (2 = 200mm) 
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Comparison of the numerical and the experimental results 

The flow field was visualized by using A1,0, particles. By illuminating heavily seeded oil injected 
at the filling hole, the axial flow could be seen. Figures 4 and 5 show this axial flow for Re = 55 and 
Re = 350, respectively. As seen, the axial flow component persists only in a smaller part of the 
cylindrical cavity for the low Re. For Re = 350, the axial component reaches the middle of the 
apparatus. Since most of our measurements have been made in a plane (Z  = 100mm) where axial 
flow could be observed (for the high Re group), some deviation from plane flow is unavoidable due 
to this three-dimensional effect. Pictures of the flow field in three cross-sections have been taken. 
Figures 6 and 7 show the visualized streamlines, at a plane Z = 100 mm, for Re = 55 and Re = 350, 
respectively. The numerically computed streamlines for four Reynolds numbers (Re = 60, 350, 
1000 and 2000) are shown in Figures 8-1 1.  From the streamline pattern some quantitative data on 
the flow field may be obtained. For Re = 350, we measured (from figure 7) the location of the centre 
of the main vortex with respect to the corners of the cavity and the sizes of the secondary eddies. 
Comparing these values with those obtained by numerical computations (Figure 9) show that the 
disagreement is less than 5 per cent. These small differences may be attributed mainly to 
inaccuracies in the measurements. 

The experimental velocity measurements were made along radial lines for nine different angles 

Figure 8. Computed streamline pattern for Re = 60 on an 80 x 80 mesh. Second order 
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NUflERICAL EXPERIflENTAL 

Re 60 54 A r  = 0.0156 

8 20.0 20 A e  = 0.0156 

A 1-ST ORDER 'r ___ 
ue ---- 

0 

Figure 12. Numerical (upwind scheme on a 64 x 64 mesh) and experimental (for the plane Z =  100mm) results along 
a radial line at 0 = 20". Re z 60 

NUflERICfiL EXPERIPIENTflL 

Re 60 53 

0 l o . o o  l o o  

ur 
ue 

Ar = 0.0156 
~0 = 0.0156 
1-ST ORDER 

0 Tj 

b . 

r 
0 

0 

r 
0 

Figure 13. Numerical (upwind scheme on a 64 x 64 mesh) and experimental (for the plane 2 = 1OOmm) results along 
a radial line at 0 = 10". R z 60 
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Figure 14. Numerical (upwind scheme on a 64 x 64 mesh) and experimental (for the plane Z = 100mm) results along 
a radial line at 0 = 0". Re z 60 
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R e  60 60 AhT = 0,0833 
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Figure 16. Numerical (upwind scheme on a 12 x 12 mesh) and experimental (for the plane 2 = 100mm) results along a 
radial line at 0 = - 20". Re z 60 

NUMERICflL EXPERIMENTflL 

A r  = 0.0208 

a0 = 0 . 0 2 0 8  

EXTRflPOLflTED 

Re 350 320 
0 o . o o  0 :  

0 "J I 

Figure 17. Numerical and experimental (for the plane Z = 200mm) results along a radial line at 0 = 0". Re = 320. The 
numerical values are obtained by extrapolating the solutions obtained on two grids: 48 x 48 and 96 x 96 intervals. 

(Compare the measured values with those in Figure 20 for the plane 2 = 100mm) 
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NUflERICAL EXPERIflENTAL 

Re 350 410 Ahf = 0.0125 

8 20.0 20 A@ = 0.0125 

r 

0 

a< 0 = 20". Re z 350 
Figure 18. Numerical (second order scheme on a 80 x 80 mesh) and experimental (Z = 100mm) results along a radial line 

rl 

( i- 2o", rir 1 S", i- lo", It 5" and 00). It was found difficult to measure the velocity near the corners of 
the cavity and the region which could be measured at deeper cross-sections (such as the mid-plane at 
2 = 200mm) was even more restricted. For this reason most measured results which are presented 
here are for a plane located closer to the end wall ( Z  = 100 mm; i.e. one-fourth of the cavity length). 
For the low Re group the flow at this cross-section is strictly two-dimensional (Figure 4), whereas 
for the higher Re group a well observed axial flow component is present (Figure 5). In the following, 
we show results for 5 of the measured angles: 

Figures 12- 16 show the computed and the measured velocity components along a radial line for 
the five angles, for the low Re group. The numerical computations have been done on a relatively 
fine mesh (64 x 64 intervals) using upwinded FDE. The agreement between the numerical and the 
experimental results is very good for all the measured cases. A much coarser grid solution (12 x 12 
intervals) with an estimated accuracy of about 5 per cent is almost as good as the one obtained on 
the finer grid. The large errors have been observed for - 20" and - 10". These cases are shown in 
Figures 15 and 16. 

For the high Re group computed results have been obtained for a mean Reynolds number 
(Re = 350) and the extreme values of Re which have been registered during the experiments (Re = 280 
and h e  = 410). Comparison of numerical solutions obtained on successively refined grids shows 
that the accuracy of the upwinded FDE ( 3 )  -(5) is not adequate for this Re group and even on the 
finest meshes that we have used, the estimated relative error is about 10 per cent (Figure 3). 

As mentioned before, a way of increasing accuracy is by extrapolation. By Table I1 
extrapolations are meaningful in our computations. Extrapolated results [to O(hz)  and O(h3)], 
which have been computed by relatively fine grid solutions, agree well with each other. Such an 
extrapolated solution is compared with the measured velocity components in Figure 17. A 

20", & 10" and 0". 
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Re 350 380 Ar  = 0.0125 
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Figure 19. Numerical (second order scheme on a 80 x 80 mesh) and experimental (2 = 100mm) results along a radial line 
at U =  1 0 .  R e ~ 3 5 0  

NURERICAL EXPERIflENTAL 
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-1, u* ---- 

At- = 0.0125 

AB = 0.0125 

2-ND ORDER 

0 
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Figure 20. Numerical (second order scheme on a 80 x 80 mesh) and experimental (2 = 100mm) results along a radial line 
at 0 = 0". Re 350 
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corresponding comparison between the solution to the central finite difference equations (on a 
mesh with 80 x 80 intervals), is shown in Figures 18-22. As can be observed there is a good 
agreement between the computed and the measured velocities. These Figures reveal that there are 
small disagreements in the azimuthal velocity component for some angles (Figures 19 and 20) and 
in the radial velocity component at 0”. For the last angle we have some measured values from the 
mid cross-section (2 = 200 mm) too. These measurements are compared with the computed 
velocity components in Figure 17. Most discrepancies which could be observed at this angle at the 
plane closer to the end wall, ( Z  = 100mm, Figure 20), are absent. 

CONCLUDING REMARKS 

The flow in a two dimensional polar cavity has been considered numerically and experimentally. 
By considering the numerical solutions computed on different grids, the absolute levels of the 
accuracy could be estimated. It has been found that for the low Re group (Re = 60) the solution to 
the upwind FDE on coarse grids is accurate enough and it is in good agreement with the 
experimental results. For the higher Re group (Re  = 350) only fine mesh solutions, using either 
central FDE or extrapolations, give comparable levels of accuracy. The validity of an extrapolated 
solution can be assessed by computing the truncation error functions and checking their 
independence on the mesh size. We have found that for valid extrapolations, solutions on fine 
meshes have to be computed. For a comparable accuracy similar grids have to be used with the 
second order FDE. In many cases extrapolations are preferable to a high order FDE, since iterative 
schemes associated with lower order methods often converge faster than the corresponding 
schemes for a higher order FDE. 

Our experiments provided qualitative and quantitative results. The flow field was visualized, and 
the extent of the three-dimensional effects could be registered. By using a laser Doppler 
anemometer, we measured the velocity components at some sections of the cylindrical cavity. The 
measured velocity components were compared to the computed solutions. We have found very 
good agreement between the results. Small discrepancies have only been found for some angles in 
the high Re group. These small differences between the numerical and the experimental results are 
attributed to three-dimensional effects in the apparatus. 
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